Let $\sum\limits_{k = 1}^{10} {f\,(a\, + \,k)} \, = \,16\,({2^{10}}\, - \,1),$ where the function $f$ satisfies $f(x + y) = f(x) f(y)$ for all natural numbers $x, y$ and $f(1) = 2.$ Then the natural number $‘ a '$ is

  • [JEE MAIN 2019]
  • A

    $4$

  • B

    $16$

  • C

    $2$

  • D

    $3$

Similar Questions

If $y = f(x) = \frac{{ax + b}}{{cx - a}}$, then $x$ is equal to

Which of the following function is surjective but not injective

Let $f$ be a real valued function defined by

$f(x) = sin^{-1} \left( {\frac{{\,\,1 - \,\,\left| x \right|}}{3}} \right) + cos^{-1}\left( {\frac{{\left| x \right|\,\, - \,\,3}}{5}} \right)$ .

Then domain of $f(x)$ is given by :

The graph of the function $f(x)=x+\frac{1}{8} \sin (2 \pi x), 0 \leq x \leq 1$ is shown below. Define $f_1(x)=f(x), f_{n+1}(x)=f\left(f_n(x)\right)$, for $n \geq 1$.

Which of the following statements are true?

$I.$ There are infinitely many $x \in[0,1]$ for which $\lim _{n \rightarrow \infty} f_n(x)=0$

$II.$ There are infinitely many $x \in[0,1]$ for which $\lim _{n \rightarrow \infty} f_n(x)=\frac{1}{2}$

$III.$ There are infinitely many $x \in[0,1]$ for which $\lim _{n \rightarrow \infty} f_n(x)=1$

$IV.$ There are infinitely many $x \in[0,1]$ for which $\lim _{n \rightarrow \infty} f_n(x)$ does not exist.

  • [KVPY 2016]

Minimum integral value of $\alpha$ for which graph of $f(x) = ||x -2| -\alpha|-5$ has exactly four $x-$intercepts-